Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Graph Model. 2006 Dec;25(4):481-6. Epub 2006 Apr 27.

Fast empirical pKa prediction by Ewald summation.

Author information

  • 1Center for Molecular and Biomolecular Informatics, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, The Netherlands. elmar@yasara.org

Abstract

pK(a) calculations for macromolecules are normally performed by solving the Poisson-Boltzmann equation, accounting for the different dielectric constants of solvent and solute, as well as the ionic strength. Despite the large number of successful applications, there are some situations where the current algorithms are not suitable: (1) large scale, high-throughput analysis which requires calculations to be completed within a fraction of a second, e.g. when permanently monitoring pK(a) shifts during a molecular dynamics simulation; (2) prediction of pK(a)s in periodic boundaries, e.g. when reconstructing entire protein crystal unit cells from PDB files, including the correct protonation patterns at experimental pH. Such in silico crystals are needed by 'self-parameterizing' molecular dynamics force fields like YASARA YAMBER, that optimize their parameters while energy-minimizing high-resolution protein crystals. To address both problems, we define an empirical equation that expresses the pK(a) as a function of electrostatic potential, hydrogen bonds and accessible surface area. The electrostatic potential is evaluated by Ewald summation, which captures periodic crystal environments and the uncertainty in atom positions using Gaussian charge densities. The empirical proportionality constants are derived from 217 experimentally determined pK(a)s, and despite its simplicity, this pK(a) calculation method reaches a high overall jack-knifed accuracy, and is fast enough to be used during a molecular dynamics simulation. A reliable null-model to judge pK(a) prediction accuracies is also presented.

PMID:
16644253
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk