Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Control Release. 2006 May 30;112(3):293-300. Epub 2006 Apr 27.

Elevated temperature accelerated release testing of PLGA microspheres.

Author information

  • 1Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.

Abstract

Drug release from four different poly(lactic-co-glycolic) acid (PLGA) microsphere formulations was evaluated under "real-time" (37 degrees C) and accelerated release testing conditions of elevated temperature (45, 53, 60 and 70 degrees C) and increase in flow rate (4-35 ml/min) using United States Pharmacopeia (USP) apparatus 4. Formulation 5 K (composed of low Mw PLGA) exhibited diffusion-controlled kinetics in "real-time". Whereas, formulations 25 K, 28 K and 70 K (composed of medium and high Mw PLGA) followed erosion-controlled kinetics at 37 degrees C. Temperature-induced degradation of the microspheres was studied by monitoring drug release rates, change in molecular weight and morphological changes. Drug release rates at elevated temperature were used to predict "real-time" release applying the Arrhenius equation. The energy of activation for dexamethasone release from PLGA microspheres was calculated as 19.14 kcal/mol. Molecular weight change measured by gel permeation chromatography followed first order kinetics for both "real-time" and accelerated release. All four formulations exhibited morphological changes (such as surface pore closing and geometry change) at elevated temperature with consequent reduction in burst release.

PMID:
16644055
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk