Invasive cordgrass modifies wetland trophic function

Ecology. 2006 Feb;87(2):419-32. doi: 10.1890/04-1752.

Abstract

Vascular plants strongly control belowground environments in most ecosystems. Invasion by vascular plants in coastal wetlands, and by cordgrasses (Spartina spp.) in particular, are increasing in incidence globally, with dramatic ecosystem-level consequences. We examined the trophic consequences of invasion by a Spartina hybrid (S. alterniflora x S. foliosa) in San Francisco Bay (USA) by documenting differences in biomass and trophic structure of benthic communities between sediments invaded by Spartina and uninvaded sediments. We found the invaded system shifted from an algae-based to a detritus-based food web. We then tested for a relationship between diet and tolerance to invasion, hypothesizing that species that consume Spartina detritus are more likely to inhabit invaded sediments than those that consume surface algae. Infaunal diets were initially examined with natural abundance stable isotope analyses and application of mixing models, but these yielded an ambiguous picture of food sources. Therefore, we conducted isotopic enrichment experiments by providing 15N-labeled Spartina detritus both on and below the sediment surface in areas that either contained Spartina or were unvegetated. Capitellid and nereid polychaetes, and oligochaetes, groups shown to persist following Spartina invasion of San Francisco Bay tidal flats, took up 15N from labeled native and invasive Spartina detritus. In contrast, we found that amphipods, bivalves, and other taxa less tolerant to invasion consumed primarily surficial algae, based on 13C enrichment experiments. Habitat (Spartina vs. unvegetated patches) and location of detritus (on or within sediments) did not affect 15N uptake from detritus. Our investigations support a "trophic shift" model for ecosystem response to wetland plant invasion and preview loss of key trophic support for fishes and migratory birds by shifting dominance to species not widely consumed by species at higher trophic levels.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Ecosystem
  • Food Chain
  • Poaceae / physiology*