Effect of metabolic inhibition on the excitability of isolated hippocampal CA1 neurons: developmental aspects

J Neurophysiol. 1991 Nov;66(5):1471-82. doi: 10.1152/jn.1991.66.5.1471.

Abstract

1. The effects of brief exposures to hypoxia on the membrane currents of isolated hippocampal CA1 neurons were studied with the use of the whole-cell variation of the patch-clamp technique. Neurons were acutely dissociated from immature (day 2-7) and mature (day 21-43) rats. 2. In the current-clamp mode, Na-cyanide (CN) hyperpolarized both mature and immature neurons. In the voltage-clamp mode, CN decreased the magnitude of the hyperpolarizing holding current in both age groups. 3. CN did not have a consistent effect on the voltage-dependent calcium and potassium currents of immature and mature CA1 neurons but decreased the voltage-dependent inward current of neurons at both ages. This effect was age dependent: the inward current of immature neurons decreased by only 10%, but that of mature neurons decreased by approximately 40%. 4. The decrease in the magnitude of the hyperpolarizing holding current and the depression of the voltage-dependent inward current of mature neurons were observed during brief exposure to N2 (PO2 = 0), indicating that the electroresponses observed with CN were the result of blocking oxidative respiration. 5. The hypoxia-sensitive inward current was blocked by tetrodotoxin (TTX) but was not blocked by cadmium or cesium + tetraethylammonium (TEA). Therefore this current was identified as the voltage-dependent, fast-inactivating sodium current (INa). 6. The isolated sodium current was studied with the use of cadmium to block calcium and TEA + cesium to block potassium currents. In mature neurons, CN left-shifted the steady-state inactivation curve for INa and slowed the deactivation kinetics of INa. CN caused little or no change in INa activation, fast inactivation, recovery from inactivation, or current-voltage (I-V) relationship. 7. We conclude that brief exposures to CN and hypoxia alter the intrinsic excitability of CA1 neurons by at least two mechanisms: 1) alterations in leakage currents and 2) alterations in the fast Na+ conductance that are maturationally dependent. We propose that the alterations in the Na+ conductance may play an adaptive role by reducing O2 demands and thus possibly delaying neuronal injury.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aging
  • Animals
  • Cadmium / pharmacology
  • Calcium Channels / drug effects
  • Calcium Channels / physiology*
  • Cell Hypoxia
  • Cesium / pharmacology
  • Electrophysiology / methods
  • Evoked Potentials / drug effects
  • Hippocampus / growth & development
  • Hippocampus / physiology*
  • In Vitro Techniques
  • Membrane Potentials / drug effects
  • Neurons / drug effects
  • Neurons / physiology*
  • Potassium Channels / drug effects
  • Potassium Channels / physiology*
  • Pyramidal Tracts / drug effects
  • Pyramidal Tracts / growth & development
  • Pyramidal Tracts / physiology*
  • Rats
  • Rats, Inbred Strains
  • Sodium Cyanide / pharmacology*
  • Tetraethylammonium
  • Tetraethylammonium Compounds / pharmacology
  • Tetrodotoxin / pharmacology*

Substances

  • Calcium Channels
  • Potassium Channels
  • Tetraethylammonium Compounds
  • Cadmium
  • Cesium
  • Tetrodotoxin
  • Tetraethylammonium
  • Sodium Cyanide