Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2006 Oct;291(4):H1829-37. Epub 2006 Apr 14.

Engineered early embryonic cardiac tissue retains proliferative and contractile properties of developing embryonic myocardium.

Author information

  • 1Rangos Research Center, Rm. 3320E, 3460 Fifth Ave., Pittsburgh, PA 15213, USA.


Embryonic myocardium has a high rate of cell proliferation and regulates cellular proliferation, contractile function, and myocardial architecture in response to changes in external mechanical loads. However, the small and complex three-dimensional (3D) structure of the embryonic myocardium limits our ability to directly investigate detailed relationships between mechanical load, contractile function, and cardiomyocyte proliferation. We developed a novel 3D engineered early embryonic cardiac tissue (EEECT) from early embryonic ventricular cells to test the hypothesis that EEECT retains the proliferative and contractile properties of embryonic myocardium. We combined freshly isolated White Leghorn chicken embryonic ventricular cells at Hamburger-Hamilton (HH) stage 31 (day 7 of a 46-stage, 21-day incubation period), collagen type I, and matrix factors to construct cylindrical-shaped EEECTs. We studied tissue architecture, cell proliferation patterns, and contractile function. We then generated engineered fetal cardiac tissue (EFCT) from HH stage 40 (day 14) fetal ventricular cells for direct comparison with EEECT. Tissue architecture was similar in EEECT and EFCT. EEECT maintained high cell proliferation patterns by culture day 12, whereas EFCT decreased cell proliferation rate by culture day 9 (P < 0.05). EEECT increased active contractile force from culture day 7 to day 12. The culture day 12 EEECT contractile response to the beta-adrenergic stimulation was less than culture day 9 EFCT (P < 0.05). Cyclic mechanical stretch stimulation induced myocardial hyperplasia in EEECT. Results indicate that EEECT retains the proliferative and contractile properties of developing embryonic myocardium and shows potential as a robust in vitro model of developing embryonic myocardium.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk