Format

Send to:

Choose Destination
See comment in PubMed Commons below
Microbes Infect. 2006 Apr;8(5):1209-18. Epub 2006 Jan 19.

CR3 (CD11b/CD18) is the major macrophage receptor for IgM antibody-mediated phagocytosis of African trypanosomes: diverse effect on subsequent synthesis of tumor necrosis factor alpha and nitric oxide.

Author information

  • 1Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.

Abstract

Immunoglobulin M (IgM) antibodies to the variant surface glycoproteins (VSG) of African trypanosomes are the first and predominant class of anti-trypanosomal antibodies in the infected host. They are a major factor in controlling waves of parasitemia, but not in long-term survival. The macrophage receptor(s) that enables phagocytosis of IgM anti-VSG-coated African trypanosomes is unknown. We assessed whether complement receptor CR3 (CD11b/CD18) might be involved in mediating phagocytosis of Trypanosoma congolense. We show that murine complement C3 fragments are deposited onto T. congolense when the trypanosomes are incubated with IgM anti-VSG and fresh mouse serum. In the presence of fresh mouse serum, there is significantly and markedly less phagocytosis of IgM-opsonized T. congolense by CD11b-deficient macrophages compared to phagocytosis by wild-type macrophages (78% fewer T. congolense are ingested per macrophage). Significantly less tumor necrosis factor (TNF)-alpha (38% less), but significantly more nitric oxide (NO) (63% more) are released by CD11b-deficient macrophages that have engulfed trypanosomes than by equally treated wild-type macrophages. We conclude that CR3 is the major, but not the only, receptor involved in IgM anti-VSG-mediated phagocytosis of T. congolense by macrophages. We further conclude that IgM anti-VSG-mediated phagocytosis of T. congolense enhances synthesis of disease-producing TNF-alpha and inhibits synthesis of parasite-controlling NO. We suggest that signaling of inhibition of NO synthesis is mediated via CR3.

PMID:
16616573
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk