Display Settings:

Format

Send to:

Choose Destination
Cancer Cell. 2006 Apr;9(4):287-300.

Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain.

Author information

  • 1Neuro-Oncology Branch, National Cancer Institute/National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.

Abstract

Stem cell factor (SCF) is overexpressed by neurons following brain injury as well as by glioma cells; however, its role in gliomagenesis remains unclear. Here, we demonstrate that SCF directly activates brain microvascular endothelial cells (ECs) in vitro and induces a potent angiogenic response in vivo. Primary human gliomas express SCF in a grade-dependent manner and induce normal neurons to express SCF in brain regions infiltrated by glioma cells, areas that colocalize with prominent angiogenesis. Downregulation of SCF inhibits tumor-mediated angiogenesis and glioma growth in vivo, whereas overexpression of SCF is associated with shorter survival in patients with malignant gliomas. Thus, the SCF/c-Kit pathway plays an important role in tumor- and normal host cell-induced angiogenesis within the brain.

PMID:
16616334
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk