Display Settings:

Format

Send to:

Choose Destination
Cell Commun Adhes. 2006 Jan-Apr;13(1-2):41-54.

Regulation of gap junction coupling through the neuronal connexin Cx35 by nitric oxide and cGMP.

Author information

  • 1Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston, 77030, USA.

Abstract

Gap-junctional coupling among neurons is subject to regulation by a number of neurotransmitters including nitric oxide. We studied the mechanisms by which NO regulates coupling in cells expressing Cx35, a connexin expressed in neurons throughout the central nervous system. NO donors caused potent uncoupling of HeLa cells stably transfected with Cx35. This effect was mimicked by Bay 21-4272, an activator of guanylyl cyclase. A pharmacological analysis indicated that NO-induced uncoupling involved both PKG-dependent and PKG-independent pathways. PKA was involved in both pathways, suggesting that PKG-dependent uncoupling may be indirect. In vitro, PKG phosphorylated Cx35 at three sites: Ser110, Ser276, and Ser289. A mutational analysis indicated that phosphorylation on Ser110 and Ser276, sites previously shown also to be phosphorylated by PKA, had a significant influence on regulation. Ser289 phosphorylation had very limited effects. We conclude that NO can regulate coupling through Cx35 and that regulation is indirect in HeLa cells.

PMID:
16613779
[PubMed - indexed for MEDLINE]
PMCID:
PMC2189984
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Informa Healthcare Icon for PubMed Central
    Loading ...
    Write to the Help Desk