Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 Jun 9;281(23):16006-15. Epub 2006 Apr 10.

A conformational switch in vinculin drives formation and dynamics of a talin-vinculin complex at focal adhesions.

Author information

  • 1Department of Biological Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.

Abstract

Dynamic interactions between the cytoskeleton and integrins control cell adhesion, but regulatory mechanisms remain largely undefined. Here, we tested the extent to which the autoinhibitory head-tail interaction (HTI) in vinculin regulates formation and lifetime of the talin-vinculin complex, a proposed mediator of integrin-cytoskeleton bonds. In an ectopic recruitment assay, mutational reduction of HTI drove assembly of talin-vinculin complexes, whereas ectopic complexes did not form between talin and wild-type vinculin. Moreover, reduction of HTI altered the dynamic assembly of vinculin and talin in focal adhesions. Using fluorescence recovery after photobleaching, we show that the focal adhesion residency time of vinculin was enhanced up to 3-fold by HTI mutations. The slow dynamics of vinculin correlated with exposure of its cryptic talin-binding site, and a talin-binding site mutation rescued the dynamics of activated vinculin. Significantly, HTI-deficient vinculin inhibited the focal adhesion dynamics of talin, but not paxillin or alpha-actinin. These data show that talin conformation in cells permits vinculin binding, whereas the autoinhibited conformation of vinculin constitutes the barrier to complex formation. Down-regulation of HTI in vinculin to Kd approximately 10(-7) is sufficient to induce talin binding, and HTI is essential to the dynamics of vinculin and talin at focal adhesions. We therefore conclude that vinculin conformation, as modulated by the strength of HTI, directly regulates the formation and lifetime of talin-vinculin complexes in cells.

PMID:
16608855
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk