Send to:

Choose Destination
See comment in PubMed Commons below
Biol Chem. 2006 Apr;387(4):381-5.

Concomitant suppression of hyperlipidemia and intestinal polyp formation by increasing lipoprotein lipase activity in Apc-deficient mice.

Author information

  • 1Cancer Prevention Basic Research Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.


Epidemiologically, a high-fat diet is associated with the risk of colon cancer. In addition, serum levels of triglycerides (TGs) and cholesterol have been demonstrated to be positively associated with colon carcinogenesis. We recently found that an age-dependent hyperlipidemic state (high serum TG levels) exists in Apc-deficient mice, an animal model for human familial adenomatous polyposis. The mRNA levels of lipoprotein lipase (LPL), which catalyzes TG hydrolysis, were shown to be downregulated in the liver and intestines of mice. Moreover, treatment with a peroxisome proliferator-activated receptor (PPAR) alpha agonist, bezafibrate, or a PPARgamma agonist, pioglitazone, suppressed both hyperlipidemia and intestinal polyp formation in the mice, with induction of LPL mRNA. PPARalpha and PPARgamma agonists are reported to exert anti-proliferative and pro-apoptotic effects in cancer cells. One compound that also increases LPL expression levels but does not possess PPAR agnostic activity is NO-1886. When given at 400 or 800 ppm in the diet, it suppresses both hyperlipidemia and intestinal polyp formation in Apc-deficient mice, with elevation of LPL mRNA. In conclusion, a decrease in serum lipid levels by increasing LPL activity may contribute to a reduction in intestinal polyp formation with Apc deficiency. PPARalpha and PPARgamma agonists, as well as NO-1886, could be useful as chemopreventive agents for colon cancer.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for iFactory
    Loading ...
    Write to the Help Desk