Format

Send to:

Choose Destination
See comment in PubMed Commons below
Ecology. 2006 Mar;87(3):563-9.

Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies.

Author information

  • 1Complex Systems Research Center, University of New Hampshire, Durham, New Hampshire 03824, USA. erik.hobbie@unh.edu

Abstract

Ectomycorrhizal fungi form symbioses with most temperate and boreal tree species, but difficulties in measuring carbon allocation to these symbionts have prevented the assessment of their importance in forest ecosystems. Here, I surveyed allocation patterns in 14 culture studies and five field studies of ectomycorrhizal plants. In culture studies, allocation to ectomycorrhizal fungi (NPPf) was linearly related to total belowground net primary production (NPPb) by the equation NPPf = 41.5% x NPPb - 11.3% (r2 = 0.55, P < 0.001) and ranged from 1% to 21% of total net primary production. As a percentage of NPP, allocation to ectomycorrhizal fungi was highest at lowest plant growth rates and lowest nutrient availabilities. Because total belowground allocation can be estimated using carbon balance techniques, these relationships should allow ecologists to incorporate mycorrhizal fungi into existing ecosystem models. In field studies, allocation to ectomycorrhizal fungi ranged from 0% to 22% of total allocation, but wide differences in measurement techniques made intercomparisons difficult. Techniques such as fungal in-growth cores, root branching-order studies, and isotopic analyses could refine our estimates of turnover rates of fine roots, mycorrhizae, and extraradical hyphae. Together with ecosystem modeling, such techniques could soon provide good estimates of the relative importance of root vs. fungal allocation in belowground carbon budgets.

PMID:
16602286
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk