Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 2006 Apr;188(8):2865-74.

Conserving a volatile metabolite: a role for carboxysome-like organelles in Salmonella enterica.

Author information

  • 1Microbiology Section, Division of Biological Sciences, University of California-Davis, Davis, CA, USA.

Abstract

Salmonellae can use ethanolamine (EA) as a sole source of carbon and nitrogen. This ability is encoded by an operon (eut) containing 17 genes, only 6 of which are required under standard conditions (37 degrees C; pH 7.0). Five of the extra genes (eutM, -N, -L, -K, and -G) become necessary under conditions that favor loss of the volatile intermediate, acetaldehyde, which escapes as a gas during growth on EA and is lost at a higher rate from these mutants. The eutM, -N, -L, and -K genes encode homologues of shell proteins of the carboxysome, an organelle shown (in other organisms) to concentrate CO(2). We propose that carboxysome-like organelles help bacteria conserve certain volatile metabolites-CO(2) or acetaldehyde-perhaps by providing a low-pH compartment. The EutG enzyme converts acetaldehyde to ethanol, which may improve carbon retention by forming acetals; alternatively, EutG may recycle NADH within the carboxysome.

PMID:
16585748
[PubMed - indexed for MEDLINE]
PMCID:
PMC1447003
Free PMC Article

Images from this publication.See all images (10)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk