Send to

Choose Destination
See comment in PubMed Commons below
Genome Biol. 2006;7(3):R26. Epub 2006 Mar 31.

The contributions of normal variation and genetic background to mammalian gene expression.

Author information

  • 1Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.



Qualitative and quantitative variability in gene expression represents the substrate for external conditions to exert selective pressures for natural selection. Current technologies allow for some forms of genetic variation, such as DNA mutations and polymorphisms, to be determined accurately on a comprehensive scale. Other components of variability, such as stochastic events in cellular transcriptional and translational processes, are less well characterized. Although potentially important, the relative contributions of genomic versus epigenetic and stochastic factors to variation in gene expression have not been quantified in mammalian species.


In this study we compared microarray-based measures of hepatic transcript abundance levels within and between five different strains of Mus musculus. Within each strain 23% to 44% of all genes exhibited statistically significant differences in expression between genetically identical individuals (positive false discovery rate of 10%). Genes functionally associated with cell growth, cytokine activity, amine metabolism, and ubiquitination were enriched in this group. Genetic divergence between individuals of different strains also contributed to transcript abundance level differences, but to a lesser extent than intra-strain variation, with approximately 3% of all genes exhibiting inter-strain expression differences.


These results indicate that although DNA sequence fixes boundaries for gene expression variability, there remain considerable latitudes of expression within these genome-defined limits that have the potential to influence phenotypes. The extent of normal or expected natural variability in gene expression may provide an additional level of phenotypic opportunity for natural selection.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk