Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Mol Graph Model. 2006 Dec;25(4):396-409. Epub 2006 Mar 30.

Molecular dynamics of a biophysical model for beta2-adrenergic and G protein-coupled receptor activation.

Author information

  • 1Department of Physiology and Biophysics, Mount Sinai School of Medicine, One Gustav Levy Place, New York, NY 10029, USA.

Abstract

This study analyzes 16 molecular dynamic simulations of a biophysical model for beta(2)-adrenergic (B2AR) and G protein-coupled receptor (GPCR) activation. In this model, a highly conserved cysteine residue, C106 (C3.25 or CysIII:01), provides a free sulfhydryl or thiol group in an acid-base equilibrium between uncharged (RSH) and charged (RS(-)) states that functions as an electrostatic molecular switch for receptor activation. The transition of C106 in the B2AR between acid and base states significantly changes the helical/transmembrane (TM) domain interactions and the electrostatic interaction energy differences (DeltaDeltaE(EL)). The DeltaDeltaE(EL) changes correlate well with the experimentally observed ligand efficacies. The TM interaction energies display patterns compatible with those previously recognized as responsible for GPCR activation. Key differences between the agonist, epinephrine, and the antagonist, pindolol, are seen for the TM3 x 6, TM3 x 4, TM6 x 7 and TM1 x 7 interaction energies. Pindolol also produces a weaker DeltaDeltaE(EL) interaction and less TM interaction energy changes, which are important differences between the agonist and antagonist ligands. The D115E mutant with pindolol displays a greater DeltaDeltaE(EL) and TM interactions than for the wild-type B2AR with pindolol. This explains the higher activity of pindolol in the D115E mutant. The constitutively active D130A mutant displays TM interaction patterns similar to those for the activating ligands implying a common pattern for receptor activation. These findings support the broad concept of protean agonism and demonstrate the potential for allosteric modulation. They also demonstrate that this two-state model agrees with many previous experimental and theoretical observations of GPCRs.

PMID:
16574446
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk