Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Dent. 2006 Sep;34(8):544-55. Epub 2006 Mar 29.

Ion processes in glass ionomer cements.

Author information

  • 1Biomaterials in Relation to Dentistry, Institute of Dentistry, Queen Mary University of London, Medical Science Building, Mile End Road, London E1 4NS, UK. r.w.billington@qmul.ac.uk


Ion processes are involved in many aspects of glass-ionomer cements. The ions released from the glass take part in the formation of the cement matrix. Although this process has been investigated, particularly using model cement systems, no study provides a complete matrix composition. Combining results from different studies enables an approximate composition to be derived. The importance of Phosphorous in controlling ion release from the glass surface has been identified in a number of studies. The release of ions from the set cement into water (and other aqueous liquids) has been much reported, particularly for fluoride. Over most of the release periods studied (i.e. from >7 days up to 3 years), release of F ion is related to t1/2 indicating a diffusion-controlled process. Other ions, except possibly Na+ also show this relationship. The amount of cumulative F release whilst maintaining this relationship indicates that more F than is in the matrix is involved. Ion chromatography would probably elucidate the precise form of the ionic species released. Glass-ionomer cements take up ions from solutions in which they are immersed. The levels are much higher than required to produce as internal/external equilibrium. Studies using dynamic SIMS and XPS give some information on ion location and elemental association. It is suggested that ToF SIMS would elucidate these further. Re-release of uptaken ions can vary considerably for different cements and ion species. Surface disruption of glass ionomers is caused by both F ion and monofluorophosphate ion and occurs much more readily in F containing cements than in F free ones. The mechanism of this process has not been elucidated. Analysis of the ions released from the cement as disruption occurs should provide an indication of the site of attack.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk