Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Microbiol. 2006 Apr;60(2):287-98.

Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase of Thermoproteus tenax: key pieces in the puzzle of archaeal carbohydrate metabolism.

Author information

  • 1Department of Microbiology, Universität Duisburg-Essen, 45117 Essen, Germany. britta.tjaden@uni-due.de

Abstract

The interconversion of phosphoenolpyruvate and pyruvate represents an important control point of the Embden-Meyerhof-Parnas (EMP) pathway in Bacteria and Eucarya, but little is known about this site of regulation in Archaea. Here we report on the coexistence of phosphoenolpyruvate synthetase (PEPS) and the first described archaeal pyruvate, phosphate dikinase (PPDK), which, besides pyruvate kinase (PK), are involved in the catalysis of this reaction in the hyperthermophilic crenarchaeote Thermoproteus tenax. The genes encoding T. tenax PEPS and PPDK were cloned and expressed in Escherichia coli, and the enzymic and regulatory properties of the recombinant gene products were analysed. Whereas PEPS catalyses the unidirectional conversion of pyruvate to phosphoenolpyruvate, PPDK shows a bidirectional activity with a preference for the catabolic reaction. In contrast to PK of T. tenax, which is regulated on transcript level but exhibits only limited regulatory potential on protein level, PEPS and PPDK activities are modulated by adenosine phosphates and intermediates of the carbohydrate metabolism. Additionally, expression of PEPS is regulated on transcript level in response to the offered carbon source as revealed by Northern blot analyses. The combined action of the differently regulated enzymes PEPS, PPDK and PK represents a novel way of controlling the interconversion of phosphoenolpyruvate and pyruvate in the reversible EMP pathway, allowing short-term and long-term adaptation to different trophic conditions. Comparative genomic analyses indicate the coexistence of PEPS, PPDK and PK in other Archaea as well, suggesting a similar regulation of the carbohydrate metabolism in these organisms.

PMID:
16573681
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk