Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Med Sci. 1991 Sep;302(3):163-70.

Inhibition of human type IV collagenase by a highly conserved peptide sequence derived from its prosegment.

Author information

  • 1Tumor Invasion and Metastasis Section, Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland 20892.

Abstract

The proenzyme fragment of the 72 kDa type IV collagenase contains a conserved amino acid sequence, MRKPRCGN(V)PDV, that is shared with other members of the matrix metalloproteinase family, such as interstitial collagenase and stromelysin. This sequence is lost upon the autocatalytic removal of the 80-84 amino acids from the amino terminus of these proenzymes following enzyme activation. The loss of this profragment converts the latent proenzyme species into a stable active enzyme species. In the present study, we demonstrate that this conserved prosegment sequence is an inhibitor of these enzymes and plays a critical role in maintenance of the latent state of the matrix metalloproteinases. Peptides containing the conserved sequence, MRKPRCGNPDV, were capable of inhibiting activated enzyme. Free cysteine was also an effective inhibitor, whereas reduced glutathione was a less effective inhibitor. Oxidized glutathione was not inhibitory. The 72 kDa type IV collagenase holoproenzyme preparations did not contain a free cysteinyl side chain that reacted with the sulfhydryl substitution reagent 5,5'-dithiobis(2-nitrobenzoic acid) (Ellman's reagent). However, addition of ethylenediaminetetraacetic acid to the reaction mixture to generate the apoenzyme form resulted in the detection of titrable sulfhydryl side chains. Based on these data, we postulate that in the latent enzyme state the conserved profragment sequence interacts with the metal atom at the active site through a sulfhydryl-metal atom coordination that is further stabilized by the amino acyl residues surrounding the essential 73Cys residue. Disturbance of this interaction results in enzyme activation.(ABSTRACT TRUNCATED AT 250 WORDS)

PMID:
1656751
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk