Send to:

Choose Destination
See comment in PubMed Commons below
Plant Cell Rep. 2006 Sep;25(9):968-77. Epub 2006 Mar 22.

Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera.

Author information

  • 1Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.


Dehydrins are proteins that accumulate in vegetative tissues subjected to various dehydrating stress conditions such as cold, drought, and salinity and in seeds at later stages of embryogenesis. Here, we report on two highly identical dehydrin genes, DHN1a and DHN1b, in wild and cultivated grapes, Vitis riparia and Vitis vinifera, and their expression in different tissues and under different environmental conditions. The two genes and their transcripts can easily be distinguished by RT-PCR because DHN1b has an 18 bp deletion compared to DHN1a. V. riparia expressed only DHN1a; V. vinifera expressed both DHN1a and DHN1b. Spliced transcripts, DHN1-S, encoding a putative YSK(2)-type dehydrin were present in low amounts in control leaves, but in high amounts in buds and seeds. Unspliced transcripts, DHN1-U, accumulated to high levels in buds and seeds. Cold, drought, and ABA treatment increased accumulation of both DHN1-S and DHN1-U in leaves, whereas short-day treatment increased only DHN1-S. The possible relation of these results with the difference in freezing stress tolerance between V. riparia and V. vinifera is discussed.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk