Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Annu Rev Immunol. 2006;24:353-89.

Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large.

Author information

  • 1Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA. bruce@scripps.edu

Abstract

Classical genetic methods, driven by phenotype rather than hypotheses, generally permit the identification of all proteins that serve nonredundant functions in a defined biological process. Long before this goal is achieved, and sometimes at the very outset, genetics may cut to the heart of a biological puzzle. So it was in the field of mammalian innate immunity. The positional cloning of a spontaneous mutation that caused lipopolysaccharide resistance and susceptibility to Gram-negative infection led directly to the understanding that Toll-like receptors (TLRs) are essential sensors of microbial infection. Other mutations, induced by the random germ line mutagen ENU (N-ethyl-N-nitrosourea), have disclosed key molecules in the TLR signaling pathways and helped us to construct a reasonably sophisticated portrait of the afferent innate immune response. A still broader genetic screen--one that detects all mutations that compromise survival during infection--is permitting fresh insight into the number and types of proteins that mammals use to defend themselves against microbes.

PMID:
16551253
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Atypon
    Loading ...
    Write to the Help Desk