Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Dent Mater. 2006 Aug;22(8):785-91. Epub 2006 Mar 15.

A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resin-monomers.

Author information

  • 1Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran. M.Atai@ippi.ac.ir



The aim of the study was to develop a new kinetic model for the shrinkage-strain rates of dental resin composites. The effect of filler content on the shrinkage-strain kinetics and degree of conversion of dental composites was also investigated.


A resin matrix containing 65 wt.% Bis-GMA and 35 wt.% TEGDMA was prepared. 0.5 wt.% camphorquinone and 0.5 wt.% dimethyl aminoethyl methacrylate were dissolved in the resin as photo-initiator system. Silanized glass fillers were added in different percentages to the resin-monomers. The shrinkage-strain of the specimens photopolymerized at circa 550 mW/cm2 was measured using the bonded-disc technique at 23, 37 and 45 degrees C for the matrix monomers and 23 degrees C for the composites. Initial shrinkage-strain rates were obtained by numerical differentiation of shrinkage-strain data with respect to time. Degree-of-conversion of the composites containing different filler contents was measured using FTIR spectroscopy.


A new kinetic model was developed for the shrinkage-strain rate using the autocatalytic model of Kamal [Kamal MR, Sourour S. Kinetic and thermal characterization of thermoset cure. Polym Eng Sci 1973;13(1):59-64], which is used to describe the reaction kinetics of thermoset resins. The model predictions were in good agreement with the experimental data. The results also showed a linear correlation between the shrinkage-strain (and shrinkage-strain rate) and filler-volume fraction. The filler fraction did not affect the degree-of-conversion of the composites.


The rate of polymerization, determined via the shrinkage, being invariant with filler-fraction, suggests that only a relatively high filler-surface area, as may be obtained with nano-fillers, will affect the network-forming kinetics of the resin matrix.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk