Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4146-51. Epub 2006 Mar 6.

Circadian time-keeping during early stages of development.

Author information

  • 1Departments of Zoology and Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Abstract

The zebrafish pineal gland is a photoreceptive organ containing an intrinsic central circadian oscillator, which drives daily rhythms of gene expression and the melatonin hormonal signal. Here we investigated the effect of light, given at early developmental stages before pineal gland formation, on the pineal circadian oscillator. Embryos that were exposed to light at 0-6, 10-13, or 10-16 h after fertilization exhibited clock-controlled rhythms of arylalkylamine-N-acetyltransferase (zfaanat2) mRNA in the pineal gland during the third and fourth day of development. This rhythm was absent in embryos that were placed in continuous dark within 2 h after fertilization (before blastula stage). Differences in the phases of these rhythms indicate that they are determined by the time of illumination. Light treatments at these stages also caused a transient increase in period2 mRNA levels, and the development of zfaanat2 mRNA rhythm was abolished by PERIOD2 knock-down. These results indicate that light exposure at early developmental stages, and light-induced expression of period2, are both required for setting the phase of the circadian clock. The 24-h rhythm is then maintained throughout rapid proliferation and, remarkably, differentiation.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk