Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Plant Cell. 2006 Apr;18(4):805-14. Epub 2006 Mar 10.

DNA methylation is critical for Arabidopsis embryogenesis and seed viability.

Author information

  • 1Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.


DNA methylation (5-methylcytosine) in mammalian genomes predominantly occurs at CpG dinucleotides, is maintained by DNA methyltransferase1 (Dnmt1), and is essential for embryo viability. The plant genome also has 5-methylcytosine at CpG dinucleotides, which is maintained by METHYLTRANSFERASE1 (MET1), a homolog of Dnmt1. In addition, plants have DNA methylation at CpNpG and CpNpN sites, maintained, in part, by the CHROMOMETHYLASE3 (CMT3) DNA methyltransferase. Here, we show that Arabidopsis thaliana embryos with loss-of-function mutations in MET1 and CMT3 develop improperly, display altered planes and numbers of cell division, and have reduced viability. Genes that specify embryo cell identity are misexpressed, and auxin hormone gradients are not properly formed in abnormal met1 embryos. Thus, DNA methylation is critical for the regulation of plant embryogenesis and for seed viability.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (8)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk