Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell. 2006 Mar 3;21(5):711-7.

Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction.

Author information

  • 1Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

Abstract

Tyrosine phosphorylation of cellular proteins induced by extracellular cues serves as a critical mediator in the control of a great variety of cellular processes. Here, we describe an integrated experimental approach including rapid quench methodology and ESI-LC-MS/MS as well as time-resolved ESI-MS to demonstrate that tyrosine autophosphorylation of the catalytic tyrosine kinase domain of FGF-receptor-1 (FGFR1) is mediated by a sequential and precisely ordered reaction. We also demonstrate that the rate of catalysis of two FGFR substrates is enhanced by 50- to 100-fold after autophosphorylation of Y653 in the activation loop, whereas autophosphorylation of the second site in the activation loop (Y654) results in 500- to 1,000-fold increase in the rate of substrate phosphorylation. We propose that FGFR1 is activated by a two-step mechanism mediated by strictly ordered and regulated autophosphorylation, suggesting that distinct phosphorylation states may provide both temporal and spatial resolution to receptor signaling.

PMID:
16507368
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk