Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biomed Mater Res A. 2006 Jun 1;77(3):572-9.

Bioactive glass/polymer composite materials with mechanical properties matching those of cortical bone.

Author information

  • 1Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada N6A 5C1.

Abstract

Stress shielding resulting from mismatch in dynamic mechanical properties contributes to the reduced stability of osseous implants. Our objective was to develop biocompatible composites having mechanical properties similar to those of cortical bone. Polymers of urethane dimethacrylate (UDMA) and 2-hydroxyethyl methacrylate (HEMA, 0-20%) and composites containing bioactive glass particles (70% SiO(2), 25% CaO, and 5% P(2)O(5)), with or without silane treatment were prepared. Young's moduli of composites containing silane-treated glass (16 GPa) were significantly greater than those of composites containing untreated glass (12-13 GPa) or of unfilled polymers (5-6 GPa). Bioactive glass reduced water sorption by the composites and incorporation of silane-treated glass prevented HEMA-induced increases in water sorption. Osteoblast-like cells attached equally well to UDMA polymer and composite containing silane-treated bioactive glass. Thus, silane treatment improved the mechanical properties of bioactive glass composites without compromising biocompatibility. This material has a Young's modulus comparable to that of cortical bone. Therefore, silane-treated bioactive glass composites, when used as implant or cement materials, would reduce stress shielding and improve implant stability.

PMID:
16506172
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk