Display Settings:

Format

Send to:

Choose Destination
Proteins. 2006 Jun 1;63(4):719-26.

Novel, structure-based mechanism for uridylylation of the genome-linked peptide (VPg) of picornaviruses.

Author information

  • 1Sealy Center for Structural Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0857, USA. chschein@utmb.edu

Abstract

The VPg peptide, which is found in poliovirus infected cells either covalently bound to the 5'-end of both plus and minus strand viral RNA, or in a uridylylated free form, is essential for picornavirus replication. Combining experimental structure and mutation results with molecular modeling suggests a new mechanism for VPg uridylylation, which assigns an additional function, that of scaffold, to the polymerase. The polarity of the NMR structure of VPg is complementary to the binding site on the surface of poliovirus polymerase determined previously by mutagenesis. Docking VPg at this position places the reactive tyrosinate close to the 5'-end of Poly(A)7 RNA when this is bound with its 3'-end in the active site of the polymerase. The triphosphate tail of a UTP moiety, base paired with the 5'-end of the RNA, projects back over the Tyr3-OH and is held in position by conserved positively charged side-chains of VPg. Other conserved residues mediate binding to the polymerase surface and serve as ligands for metal ion catalyzed transphosphorylation. Additional viral proteins or a second polymerase molecule may aid in stabilizing the components of the reaction. In the model complex, VPg can direct its own uridylylation before entering the polymerase active site.

2006 Wiley-Liss, Inc.

PMID:
16498624
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk