Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Sci Total Environ. 2006 Aug 31;367(2-3):888-98. Epub 2006 Feb 20.

Effects of multi-media partitioning of chemicals on Junge's variability-lifetime relationship.

Author information

  • 1Institute for Chemical and Bioengineering, ETH Hönggerberg, Swiss Federal Institute of Technology Zürich, CH-8093 Zürich, Switzerland.

Abstract

Junge's variability-lifetime relationship describes the relation between the tropospheric residence time of a volatile trace gas and the coefficient of variation of the tropospheric mixing ratio at a remote location. However, no unique or universal quantification of this relationship exists. It can only be derived on a case-by-case basis for consistent data sets on substances with similar source and sink patterns. Using a multi-media model of the long-range transport of organic compounds, we determine variability-lifetime relationships for volatile substances. Next, we demonstrate how the variability-lifetime relationship can be obtained for semi-volatile organic compounds (SOCs) with the model and we investigate typical deviations from the Junge relationship for volatile compounds that are caused by the multi-media partitioning of SOCs. One cause of deviation from this relationship is substances undergoing significant transport in water so that their distribution in air is noticeably influenced by their distribution in water. The other, wider, deviation is caused by substances with a strong tendency for deposition and re-volatilization. Finally, we address the comparison of the model results with field data. Preliminary analyses of long-term monitoring data for polychlorinated biphenyls at remote sites have shown that the identification of Junge relationships in field data is not straightforward. We discuss possible strategies for the derivation of Junge relationships from field data on SOCs.

PMID:
16487994
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk