Send to:

Choose Destination
See comment in PubMed Commons below
EMBO Rep. 2006 May;7(5):519-24. Epub 2006 Feb 17.

Involvement of calcineurin-dependent degradation of Yap1p in Ca2+-induced G2 cell-cycle regulation in Saccharomyces cerevisiae.

Author information

  • 1Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan.


The Ca2+-activated pathways in Saccharomyces cerevisiae induce a delay in the onset of mitosis through the activation of Swe1p, a negative regulatory kinase that inhibits the Cdc28p/Clb complex. We isolated the YAP1 gene as a multicopy suppressor of calcium sensitivity owing to the loss of ZDS1, a negative regulator of SWE1 and CLN2 gene expression. YAP1 deletion on a zds1delta background exacerbated the Ca2+-related phenotype. Yap1p was degraded in a calcineurin-dependent manner when cells were exposed to calcium. In yap1delta cells, the expression level of the RPN4 gene encoding a transcription factor for the subunits of the ubiquitin-proteasome system was diminished. The deletion of YAP1 gene or RPN4 gene led to the accumulation of Swe1p and Cln2p. Yap1p was a substrate of calcineurin in vivo and in vitro. The calcineurin-mediated Yap1p degradation seems to be a long adaptive response that assures a G2 delay in response to a stress that causes the activation of the calcium signalling pathways.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk