Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2006 Aug;1757(8):996-1011. Epub 2006 Jan 30.

Charge compensation during the phagocyte respiratory burst.

Author information

  • 1Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA.


The phagocyte NADPH oxidase produces superoxide anion (O(2)(.-)) by the electrogenic process of moving electrons across the cell membrane. This charge translocation must be compensated to prevent self-inhibition by extreme membrane depolarization. Examination of the mechanisms of charge compensation reveals that these mechanisms perform several other vital functions beyond simply supporting oxidase activity. Voltage-gated proton channels compensate most of the charge translocated by the phagocyte NADPH oxidase in human neutrophils and eosinophils. Quantitative modeling of NADPH oxidase in the plasma membrane supports this conclusion and shows that if any other conductance is present, it must be miniscule. In addition to charge compensation, proton flux from the cytoplasm into the phagosome (a) helps prevent large pH excursions both in the cytoplasm and in the phagosome, (b) minimizes osmotic disturbances, and (c) provides essential substrate protons for the conversion of O(2)(*-) to H(2)O(2) and then to HOCl. A small contribution by K+ or Cl- fluxes may offset the acidity of granule contents to keep the phagosome pH near neutral, facilitating release of bactericidal enzymes. In summary, the mechanisms used by phagocytes for charge compensation during the respiratory burst would still be essential to phagocyte function, even if NADPH oxidase were not electrogenic.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk