Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nano Lett. 2006 Feb;6(2):306-12.

Proteolytic surface functionalization enhances in vitro magnetic nanoparticle mobility through extracellular matrix.

Author information

  • 1Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA.

Abstract

Steric barriers such as collagen I sharply limit interstitial delivery of macromolecular and nanoparticle (NP) based therapeutic agents. Collagenase-linked superparamagnetic NPs overcame these barriers and moved through in vitro extracellular matrix (ECM) at 90 microm h(-1), a rate similar to invasive cells, under the influence of a magnetic field. NP migration in ECM diminished linearly over 5 days. The collagenase-NP construct overcame two of the most significant barriers to nano- and microscale therapeutics deployment: proteolytic enzyme stability was maintained during a clinically useful time frame by immobilization on the NP surface and degradation of interstitial barriers to tissue biodistribution was enabled by the conjugated microbial protease.

PMID:
16464055
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk