Display Settings:

Format

Send to:

Choose Destination
J Biol Chem. 2006 Apr 7;281(14):9755-64. Epub 2006 Feb 4.

Contribution of the histone H3 and H4 amino termini to Gcn4p- and Gcn5p-mediated transcription in yeast.

Author information

  • 1Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York 12201-2002, USA.

Abstract

Histone amino termini are post-translationally modified by both transcriptional coactivators and corepressors, but the extent to which the relevant histone modifications contribute to gene expression, and the mechanisms by which they do so, are incompletely understood. To address this issue, we have examined the contributions of the histone H3 and H4 amino termini, and of the coactivator and histone acetyltransferase Gcn5p, to activation of a small group of Gcn4p-activated genes. The histone H3 tail exerts a modest (about 2-fold) but significant effect on activation that correlates with a requirement for Gcn5p and is distributed over multiple lysine residues. The H4 tail also plays a positive role in activation of some of those genes tested, but this does not correlate as closely with Gcn5p coactivation. Microarray experiments did not reveal a close correspondence between those genes activated by Gcn4p and genes requiring the H3 or H4 tail, and analysis of published microarray data indicates that Gcn4p-regulated genes are not in general strongly dependent on Gcn5p. However, a large fraction of genes activated by Gcn4p were found to be repressed by the H3 and H4 amino termini under non-inducing conditions, indicating that one role for Gcn4p is to overcome repression mediated by the histone tails.

PMID:
16461773
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk