Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Dev Biol. 2006 Apr 1;292(1):189-204. Epub 2006 Feb 3.

Eya1 is required for lineage-specific differentiation, but not for cell survival in the zebrafish adenohypophysis.

Author information

  • 1Max-Planck Institute of Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany.

Abstract

The homeodomain transcription factor Six1 and its modulator, the protein phosphatase Eya1, cooperate to promote cell differentiation and survival during mouse organ development. Here, we studied the effects caused by loss of eya1 and six1 function on pituitary development in zebrafish. eya1 and six1 are co-expressed in all adenohypophyseal cells. Nevertheless, eya1 (aal, dog) mutants show lineage-specific defects, defining corticotropes, melanotropes, and gonadotropes as an Eya1-dependent lineage, which is complementary to the Pit1 lineage. Furthermore, eya1 is required for maintenance of pit1 expression, leading to subsequent loss of cognate hormone gene expression in thyrotropes and somatotropes of mutant embryos, whereas prolactin expression in lactotropes persists. In contrast to other organs, adenohypophyseal cells of eya1 mutants do not become apoptotic, and the adenohypophysis remains at rather normal size. Also, cells do not trans-differentiate, as in the case of pit1 mutants, but display morphological features characteristic for nonsecretory cells. Some of the adenohypophyseal defects of eya1 mutants are moderately enhanced in combination with antisense-mediated loss of Six1 function, which per se does not affect pituitary cell differentiation. In conclusion, this is the first report of an essential role of Eya1 during pituitary development in vertebrates. Eya1 is required for lineage-specific differentiation of adenohypophyseal cells, but not for their survival, thereby uncoupling the differentiation-promoting and anti-apoptotic effects of Eya proteins seen in other tissues.

PMID:
16458879
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk