Send to

Choose Destination
See comment in PubMed Commons below
Eur J Pharmacol. 2006 Feb 15;531(1-3):96-102. Epub 2006 Jan 25.

Potentiation of nicotinic currents by bradykinin in the paratracheal ganglia neurons of rats.

Author information

  • 1Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto 862-0973, Japan.


The effects of bradykinin on nicotine-induced responses were investigated in neurons dissociated from rat paratracheal ganglia using the nystatin-perforated patch-clamp recording technique. When bradykinin (10(-9) to 10(-8) M) was pretreated and then simultaneously applied with 10(-5) M nicotine, bradykinin potentiated the nicotine-induced currents. The potentiation was mimicked by [Hyp3]-bradykinin and inhibited by HOE-140, pertussis toxin, neomycin and U-73122, but not U-73433. These results suggest that bradykinin potentiates nicotinic currents via bradykinin B2 receptor, pertussis toxin-sensitive G-protein and phospholipase C. Since bradykinin inhibits the M-current via bradykinin B2 receptor and pertussis toxin-insensitive G-protein [Mochidome, T., Ishibashi, H., Takahama, K., 2001. Bradykinin activates airway parasympathetic ganglion neurons by inhibiting M-currents. Neuroscience 105, 785-791.], it seemed that bradykinin B2 receptor activated two distinct signal transduction pathways in the paratracheal ganglia neurons. This effect of bradykinin might cause enhanced synaptic transmission in paratracheal ganglia neurons and contribute to the aggravation of pathological conditions of the lower airway via enhanced acetylcholine release from the postganglionic nerve terminals.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk