Send to:

Choose Destination
See comment in PubMed Commons below
FASEB J. 2006 Apr;20(6):720-2. Epub 2006 Jan 25.

Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process.

Author information

  • 1Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA.


Fibroblast growth factor 23 null mice (Fgf-23-/-) have a short lifespan and show numerous biochemical and morphological features consistent with premature aging-like phenotypes, including kyphosis, severe muscle wasting, hypogonadism, osteopenia, emphysema, uncoordinated movement, T cell dysregulation, and atrophy of the intestinal villi, skin, thymus, and spleen. Furthermore, increased vitamin D activities in homozygous mutants are associated with severe atherosclerosis and widespread soft tissue calcifications; ablation of vitamin D activity from Fgf-23-/- mice, by genetically deleting the 1alpha(OH)ase gene, eliminates atherosclerosis and ectopic calcifications and significantly rescues premature aging-like features of Fgf-23-/- mice, resulting in prolonged survival of Fgf-23-/-/1alpha(OH)ase-/- double mutants. Our results indicate a novel role of Fgf-23 in developing premature aging-like features through regulating vitamin D homeostasis. Finally, our data support a new model of interactions among Fgf-23, vitamin D, and klotho, a gene described as being associated with premature aging process.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk