Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 Mar 24;281(12):8169-74. Epub 2006 Jan 25.

Self-association and chaperone activity of Hsp27 are thermally activated.

Author information

  • 1Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.

Abstract

The small heat shock protein 27 (Hsp27) is an oligomeric, molecular chaperone in vitro. This chaperone activity and other physiological roles attributed to Hsp27 have been reported to depend on the state of self-association. In the present work, we have used sedimentation velocity experiments to demonstrate that the self-association of Hsp27 is independent of pH and ionic strength but increases significantly as the temperature is increased from 10 to 40 degrees C. The largest oligomers formed at 10 degrees C are approximately 8-12 mer, whereas at 40 degrees C oligomers as large as 22-30 mer are observed. Similarly, the chaperone activity of Hsp27 as indicated by its ability to inhibit dithiothreitol-induced insulin aggregation also increases with increased temperature, with a particularly sharp increase in activity as temperature is increased from 34 to 43 degrees C. Similar studies of an Hsp27 triple variant that mimics the behavior of the phosphorylated protein establish that this protein has greatly diminished chaperone activity that responds minimally to increased temperature. We conclude that Hsp27 can exploit a large number of oligomerization states and that the range of oligomer size and the magnitude of chaperone activity increase significantly as temperature is increased over the range that is relevant to the physiological heat shock response.

PMID:
16436384
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk