Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2006 Jan 24;34(2):613-9. Print 2006.

Rampant polyuridylylation of plastid gene transcripts in the dinoflagellate Lingulodinium.

Author information

  • 1Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montreal, 4101 Sherbrooke est, Montreal, Quebec, Canada H1X 2B2.


Dinoflagellate plastid genes are believed to be encoded on small generally unigenic plasmid-like minicircles. The minicircle gene complement has reached saturation with an incomplete set of plastid genes (18) compared with typical functional plastids (60-200). While some of the missing plastid genes have recently been found in the nucleus, it is still unknown if additional genes, not located on minicircles, might also contribute to the plastid genome. Sequencing of tailed RNA showed that transcripts derived from the known minicircle genes psbA and atpB contained a homogenous 3' polyuridine tract of 25-40 residues. This unusual modification suggested that random sequencing of a poly(dA) primed cDNA library could be used to characterize the plastid transcriptome. We have recovered only 12 different polyuridylylated transcripts from our library, all of which are encoded on minicircles in several dinoflagellate species. The correspondence of all polyuridylylated transcripts with previously described minicircle genes thus supports the dinoflagellate plastid as harbouring the smallest genome of any functional chloroplast. Interestingly, northern blots indicate that the majority of transcripts are modified, suggesting that polyuridylylation is unlikely to act as a degradation signal as do the heterogeneous poly(A)-rich extensions of transcripts in cyanobacteria and other plastids.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk