Format

Send to:

Choose Destination
See comment in PubMed Commons below
Clin Cancer Res. 2006 Jan 15;12(2):634-42.

Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589.

Author information

  • 1The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Bunting-Blaustein Cancer Research Building 1M52, 1650 Orleans Street, Baltimore, MS 21231, USA.

Abstract

PURPOSE:

Angiogenesis is required for tumor progression and represents a rational target for therapeutic intervention. Histone deacetylase (HDAC) inhibitors have been shown to have activity against various tumor cell types by inhibiting proliferation and inducing apoptosis both in vitro and in vivo. HDAC inhibitors have also been reported to inhibit angiogenesis. The goal of this study was to characterize the antiangiogenic and antitumor activity of a recently developed HDAC inhibitor, the hydroxamic derivative LBH589.

MATERIALS AND METHODS:

To evaluate the antiangiogenesis activity of LBH589, we did cell cycle analysis, cell proliferation, tube formation, invasion assays in vitro, and Matrigel plug assay in vivo. To determine the antitumor activity of LBH589, we established human prostate carcinoma cell PC-3 xenografts in vivo. To evaluate the effect of LBH589 on endothelial signaling pathways, gene expression, and protein acetylation, we did Western blots and reverse transcription-PCR in human umbilical vein endothelial cells (HUVEC). Immunohistochemical analysis was done to evaluate new blood vessel formation in vivo.

RESULTS:

LBH589 induced acetylation of histone H3 and alpha-tubulin protein in HUVECs. Histone and nonhistone protein acetylation correlated with induction of G(2)-M cell cycle arrest, inhibition of HUVEC proliferation, and viability. Noncytotoxic concentrations of LBH589 inhibited endothelial tube formation, Matrigel invasion, AKT, extracellular signal-regulated kinase 1/2 phosphorylation, and chemokine receptor CXCR4 expression. In vivo dosing of mice with LBH589 (10 mg/kg/d) reduced angiogenesis and PC-3 tumor growth.

CONCLUSION:

This study provides evidence that LBH589 induces a wide range of effects on endothelial cells that lead to inhibition of tumor angiogenesis. These results support the role of HDAC inhibitors as a therapeutic strategy to target both the tumor and endothelial compartment and warrant the clinical development of these agents in combination with angiogenesis inhibitors.

PMID:
16428510
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk