Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 2006 Feb;188(3):1011-21.

Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus.

Author information

  • 1Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1. vmatias@uoguelph.ca

Abstract

The current perception of the ultrastructure of gram-positive cell envelopes relies mainly on electron microscopy of thin sections and on sample preparation. Freezing of cells into a matrix of amorphous ice (i.e., vitrification) results in optimal specimen preservation and allows the observation of cell envelope boundary layers in their (frozen) hydrated state. In this report, cryo-transmission electron microscopy of frozen-hydrated sections of Staphylococcus aureus D2C was used to examine cell envelope organization. A bipartite wall was positioned above the plasma membrane and consisted of a 16-nm low-density inner wall zone (IWZ), followed by a 19-nm high-density outer wall zone (OWZ). Observation of plasmolyzed cells, which were used to artificially separate the membrane from the wall, showed membrane vesicles within the space associated with the IWZ in native cells and a large gap between the membrane and OWZ, suggesting that the IWZ was devoid of a cross-linked polymeric cell wall network. Isolated wall fragments possessed only one zone of high density, with a constant level of density throughout their thickness, as was previously seen with the OWZs of intact cells. These results strongly indicate that the IWZ represents a periplasmic space, composed mostly of soluble low-density constituents confined between the plasma membrane and OWZ, and that the OWZ represents the peptidoglycan-teichoic acid cell wall network with its associated proteins. Cell wall differentiation was also seen at the septum of dividing cells. Here, two high-density zones were sandwiched between three low-density zones. It appeared that the septum consisted of an extension of the IWZ and OWZ from the outside peripheral wall, plus a low-density middle zone that separated adjacent septal cross walls, which could contribute to cell separation during division.

PMID:
16428405
[PubMed - indexed for MEDLINE]
PMCID:
PMC1347357
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk