Format

Send to

Choose Destination
See comment in PubMed Commons below
J Med Chem. 2006 Jan 26;49(2):534-53.

Novel procedure for modeling ligand/receptor induced fit effects.

Author information

  • 1Schrödinger, Inc., New York, New York 10036, USA.

Abstract

We present a novel protein-ligand docking method that accurately accounts for both ligand and receptor flexibility by iteratively combining rigid receptor docking (Glide) with protein structure prediction (Prime) techniques. While traditional rigid-receptor docking methods are useful when the receptor structure does not change substantially upon ligand binding, success is limited when the protein must be "induced" into the correct binding conformation for a given ligand. We provide an in-depth description of our novel methodology and present results for 21 pharmaceutically relevant examples. Traditional rigid-receptor docking for these 21 cases yields an average RMSD of 5.5 A. The average ligand RMSD for docking to a flexible receptor for the 21 pairs is 1.4 A; the RMSD is < or =1.8 A for 18 of the cases. For the three cases with RMSDs greater than 1.8 A, the core of the ligand is properly docked and all key protein/ligand interactions are captured.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk