Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Vasc Surg. 2006 Jan;43(1):134-41.

The bone marrow-derived endothelial progenitor cell response is impaired in delayed wound healing from ischemia.

Author information

  • 1Hospital of University of Pennsylvania, Philadelphia, PA 19124, USA.

Abstract

OBJECTIVE:

Vasculogenesis relies on the recruitment of bone marrow-derived endothelial progenitor cells (BMD EPCs) and is stimulated by tissue-level ischemia. We hypothesized that the BMD EPC response is impaired in ischemic wounds and studied the relationship between BMD EPCs and wound healing.

METHODS:

We used transgenic Tie-2/LacZ mice, which carry the beta-galactosidase (beta-gal) reporter gene under Tie-2 promoter control. Wild-type mice were lethally irradiated and reconstituted with Tie-2/LacZ bone marrow. Four weeks later, the mice underwent unilateral femoral artery ligation/excision and bilateral wounding of the hindlimbs. Ischemia was confirmed and monitored with laser Doppler imaging. A subset of mice received incisional vs excisional nonischemic bilateral hindlimb wounds, without femoral ligation. Excisional wound closure was measured by using daily digital imaging and software-assisted calculation of surface area.

RESULTS:

Ischemia resulted in significantly delayed wound healing and differentially affected the number of BMD EPCs recruited to wound granulation tissue and muscle underlying the wounds. At 3 days postwounding, the granulation tissue of the wound base contained significantly fewer numbers of BMD EPCs in ischemic wounds compared with the nonischemic wounds (P < .05). In contrast, significantly more BMD EPCs were present in the muscle underlying the ischemic wounds at this same time point compared with the muscle under the nonischemic wounds (P < .05). In ischemic wounds, eventual wound closure significantly correlated with a delayed rise in BMD EPCs within the wound granulation tissue (Kendall's correlation, -.811, P = .0005) and was significantly associated with a gradual recovery of hindlimb perfusion (P < .0001). By 7 days postwounding, BMD EPCs were incorporated into the neovessels in the granulation tissue. At 14 days and 75 days, BMD EPCs were rarely observed within the wounds.

CONCLUSIONS:

Granulation tissue of excisional ischemic wounds showed significantly less BMD EPCs 3 days postwounding, in association with significantly delayed wound closure. However, the number of BMD EPCs were increased in ischemic hindlimb skeletal muscle, consistent with the notion that ischemia is a powerful signal for vasculogenesis. To our knowledge, this is the first report identifying a deficit in BMD EPCs in the granulation tissue of ischemic skin wounds and reporting the key role for these cells in both ischemic and nonischemic wound healing.

PMID:
16414400
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk