Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Transpl Immunol. 2005 Dec;15(2):131-42. Epub 2005 Nov 8.

Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury.

Author information

  • 1Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, University of California at Irvine, 2111 Gillespie Neuroscience Research Facility, Irvine, CA, 92697-4292, USA.

Abstract

Stem cells are self-renewing, pluripotent cells that can be manipulated in vitro to differentiate into virtually any cell type. Stem cells are highly proliferative and have the potential to expand into very large numbers of a desired cell lineage. As such, they represent an excellent source of cells for cellular replacement strategies in disease states that are typified by a loss of a particular cell population. Recent studies have indicated that spinal cord injury is accompanied by chronic progressive demyelination, and have thus identified oligodendrocytes as a desirable transplant population for remyelination strategies. To address this need, we developed a method to differentiate hESCs into high purity human oligodendrocyte progenitor cells (OPCs). Transplantation into spinal cord injury sites in adult rats resulted in remyelination and functional repair. Here, we summarize these findings and present new data concerning the effects of hESC-derived OPC transplantation on the host environment.

PMID:
16412957
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk