Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Evol Dev. 2006 Jan-Feb;8(1):30-45.

Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events.

Author information

  • 1Department of Biology, The Huck Institutes of the Life Sciences, and the Institute for Molecular Genetics and Evolution, The Pennsylvania State University, University Park, PA 16802, USA.

Abstract

The MADS-box gene AGAMOUS (AG) plays a key role in determining floral meristem and organ identities. We identified three AG homologs, EScaAG1, EScaAG2, and EScaAGL11 from the basal eudicot Eschscholzia californica (California poppy). Phylogenetic analyses indicate that EScaAG1 and EScaAG2 are recent paralogs within the AG clade, independent of the duplication in ancestral core eudicots that gave rise to the euAG and PLENA (PLE) orthologs. EScaAGL11 is basal to core eudicot AGL11 orthologs in a clade representing an older duplication event after the divergence of the angiosperm and gymnosperm lineages. Detailed in situ hybridization experiments show that expression of EScaAG1 and EScaAG2 is similar to AG; however, both genes appear to be expressed earlier in floral development than described in the core eudicots. A thorough examination of available expression and functional data in a phylogenetic context for members of the AG and AGL11 clades reveals that gene expression has been quite variable throughout the evolutionary history of the AG subfamily and that ovule-specific expression might have evolved more than twice. Although sub- and neofunctionalization are inferred to have occurred following gene duplication, functional divergence among orthologs is evident, as is convergence, among paralogs sampled from different species. We propose that retention of multiple AG homologs in several paralogous lineages can be explained by the conservation of ancestral protein activity combined with evolutionarily labile regulation of expression in the AG and AGL11 clades such that the collective functions of the AG subfamily in stamen and carpel development are maintained following gene duplication.

PMID:
16409381
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk