Format

Send to:

Choose Destination
See comment in PubMed Commons below
Kidney Int. 2006 Feb;69(4):706-14.

Effects of vitamin C infusion and vitamin E-coated membrane on hemodialysis-induced oxidative stress.

Author information

  • 1Taipei City Hospital, Heping Branch, and Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.

Abstract

Chronic hemodialysis (HD) patients manifest anemia and atherosclerosis with associated oxidative stress. We explored whether intravenous infusion of vitamin C (VC) and/or use of vitamin E (VE)-coated dialysis membrane could palliate HD-evoked oxidative stress. Eighty patients undergoing chronic HD were enrolled and randomly assigned into four groups: HD with intravenous VC (n=20), HD with VE-coated dialyzer (n=20), HD with both (n=20), and HD with neither (n=20). We evaluated oxidative stress in blood and plasma, erythrocyte methemoglobin/ferricyanide reductase (red blood cells (RBC)-MFR) activity, plasma methemoglobin, and pro-inflammatory cytokines in these patients. All patients showed marked increases (14-fold) in blood reactive oxygen species (ROS) after HD. The types of ROS were mostly hydrogen peroxide, and in lesser amounts, O2*- and HOCl. HD resulted in decreased plasma VC, total antioxidant status, and RBC-MFR activity and increased plasma and erythrocyte levels of phosphatidylcholine hydroperoxide (PCOOH) and methemoglobin. Intravenous VC significantly palliated HD-induced oxidative stress, plasma and RBC levels of PCOOH, and plasma methemoglobin levels and preserved RBC-MFR activity. The VE-coated dialyzer effectively prevented RBCs from oxidative stress, although it showed a partial effect on the reduction of total ROS activity in whole blood. In conclusion, intravenous VC plus a VE-coated dialyzer is effective in palliating HD-evoked oxidative stress, as indicated by hemolysis and lipid peroxidation, and by overexpression of proinflammation cytokines in HD patients. Using VE-coated dialyzer per se is, however, effective in reducing lipid peroxidation and oxidative damage to RBCs.

PMID:
16395251
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk