Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2006 Jan;72(1):252-60.

Long serial analysis of gene expression for gene discovery and transcriptome profiling in the widespread marine coccolithophore Emiliania huxleyi.

Author information

  • 1Biology Department MS#32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. sdyhrman@whoi.edu

Abstract

The abundant and widespread coccolithophore Emiliania huxleyi plays an important role in mediating CO2 exchange between the ocean and the atmosphere through its impact on marine photosynthesis and calcification. Here, we use long serial analysis of gene expression (SAGE) to identify E. huxleyi genes responsive to nitrogen (N) or phosphorus (P) starvation. Long SAGE is an elegant approach for examining quantitative and comprehensive gene expression patterns without a priori knowledge of gene sequences via the detection of 21-bp nucleotide sequence tags. E. huxleyi appears to have a robust transcriptional-level response to macronutrient deficiency, with 42 tags uniquely present or up-regulated twofold or greater in the N-starved library and 128 tags uniquely present or up-regulated twofold or greater in the P-starved library. The expression patterns of several tags were validated with reverse transcriptase PCR. Roughly 48% of these differentially expressed tags could be mapped to publicly available genomic or expressed sequence tag (EST) sequence data. For example, in the P-starved library a number of the tags mapped to genes with a role in P scavenging, including a putative phosphate-repressible permease and a putative polyphosphate synthetase. In short, the long SAGE analyses have (i) identified many new differentially regulated gene sequences, (ii) assigned regulation data to EST sequences with no database homology and unknown function, and (iii) highlighted previously uncharacterized aspects of E. huxleyi N and P physiology. To this end, our long SAGE libraries provide a new public resource for gene discovery and transcriptional analysis in this biogeochemically important marine organism.

PMID:
16391051
[PubMed - indexed for MEDLINE]
PMCID:
PMC1352234
Free PMC Article

Images from this publication.See all images (2)Free text

FIG. 1.
FIG. 2.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk