Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Plant Cell. 2006 Feb;18(2):412-21. Epub 2005 Dec 30.

Regulation of phosphate homeostasis by MicroRNA in Arabidopsis.

Author information

  • 1Institute of BioAgricultural Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China. tjchiou@gate.sinca.edu.tw


In this study, we reveal a mechanism by which plants regulate inorganic phosphate (Pi) homeostasis to adapt to environmental changes in Pi availability. This mechanism involves the suppression of a ubiquitin-conjugating E2 enzyme by a specific microRNA, miR399. Upon Pi starvation, the miR399 is upregulated and its target gene, a ubiquitin-conjugating E2 enzyme, is downregulated in Arabidopsis thaliana. Accumulation of the E2 transcript is suppressed in transgenic Arabidopsis overexpressing miR399. Transgenic plants accumulated five to six times the normal Pi level in shoots and displayed Pi toxicity symptoms that were phenocopied by a loss-of-function E2 mutant. Pi toxicity was caused by increased Pi uptake and by translocation of Pi from roots to shoots and retention of Pi in the shoots. Moreover, unlike wild-type plants, in which Pi in old leaves was readily retranslocated to other developing young tissues, remobilization of Pi in miR399-overexpressing plants was impaired. These results provide evidence that miRNA controls Pi homeostasis by regulating the expression of a component of the proteolysis machinery in plants.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (8)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk