Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J AOAC Int. 2005 Sep-Oct;88(5):1419-27.

Determination of low molecular weight alcohols including fusel oil in various samples by diethyl ether extraction and capillary gas chromatography.

Author information

  • Kyungnam University, Division of Food Science and Biotechnology, Wolyungdong, Masan 631-701, South Korea. klwoo@mail.kyungnam.ac.kr

Abstract

Low molecular weight alcohols including fusel oil were determined using diethyl ether extraction and capillary gas chromatography. Twelve kinds of alcohols were successfully resolved on the HP-FFAP (polyethylene glycol) capillary column. The diethyl ether extraction method was very useful for the analysis of alcohols in alcoholic beverages and biological samples with excellent cleanliness of the resulting chromatograms and high sensitivity compared to the direct injection method. Calibration graphs for all standard alcohols showed good linearity in the concentration range used, 0.001-2% (w/v) for all alcohols. Salting out effects were significant (p < 0.01) for the low molecular weight alcohols methanol, isopropanol, propanol, 2-butanol, n-butanol and ethanol, but not for the relatively high molecular weight alcohols amyl alcohol, isoamyl alcohol, and heptanol. The coefficients of variation of the relative molar responses were less than 5% for all of the alcohols. The limits of detection and quantitation were 1-5 and 10-60 microg/L for the diethyl ether extraction method, and 10-50 and 100-350 microg/L for the direct injection method, respectively. The retention times and relative retention times of standard alcohols were significantly shifted in the direct injection method when the injection volumes were changed, even with the same analysis conditions, but they were not influenced in the diethyl ether extraction method. The recoveries by the diethyl ether extraction method were greater than 95% for all samples and greater than 97% for biological samples.

PMID:
16385992
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Write to the Help Desk