Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Antimicrob Agents Chemother. 2006 Jan;50(1):80-7.

Involvement of the drug transporters p glycoprotein and multidrug resistance-associated protein Mrp2 in telithromycin transport.

Author information

  • 1Department of Medical Technology, Nagoya University School of Health Sciences, Daikominami, Japan.

Abstract

The present study aims to investigate the role of P glycoprotein and multidrug resistance-associated protein (Mrp2) in the transport of telithromycin, a newly developed ketolide antibiotic, in vitro and in vivo. The in vitro experiments revealed that the intracellular accumulation of telithromycin in adriamycin-resistant human chronic myelogenous leukemia cells (K562/ADR) overexpressing P glycoprotein was significantly lower than that in human chronic myelogenous leukemia cells (K562/S) not expressing P glycoprotein. Cyclosporine significantly increased the intracellular accumulation of telithromycin in K562/ADR cells. When telithromycin was coadministered intravenously with cyclosporine in Sprague-Dawley (SD) rats, cyclosporine significantly delayed the disappearance of telithromycin from plasma and decreased its systemic clearance to 60% of the corresponding control values. Hepatobiliary excretion experiments revealed that cyclosporine almost completely inhibited the biliary clearance of telithromycin, suggesting that telithromycin is a substrate of P glycoprotein and a potential substrate of Mrp2. Moreover, the biliary clearance of telithromycin was significantly decreased by 80% in Eisai hyperbilirubinemic mutant rats with a hereditary deficiency in Mrp2, indicating that Mrp2, as well as P glycoprotein, plays an important role in the biliary excretion of telithromycin. When the effect of telithromycin on the biliary excretion of doxorubicin, a substrate of P glycoprotein and Mrp2, was examined in SD rats, telithromycin significantly decreased the biliary clearance of doxorubicin by 80%. Results obtained from this study indicate that telithromycin is a substrate of both P glycoprotein and Mrp2, and these transporters are involved in the hepatobiliary transport of telithromycin.

PMID:
16377671
[PubMed - indexed for MEDLINE]
PMCID:
PMC1346787
Free PMC Article

Images from this publication.See all images (6)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk