Format

Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2006 Feb 2;439(7076):594-8. Epub 2005 Dec 14.

Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation.

Author information

  • 1Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon 1254, Eugene, Oregon 97403, USA.

Abstract

How a cell chooses to proliferate or to differentiate is an important issue in stem cell and cancer biology. Drosophila neuroblasts undergo self-renewal with every cell division, producing another neuroblast and a differentiating daughter cell, but the mechanisms controlling the self-renewal/differentiation decision are poorly understood. Here we tested whether cell polarity genes, known to regulate embryonic neuroblast asymmetric cell division, also regulate neuroblast self-renewal. Clonal analysis in larval brains showed that pins mutant neuroblasts rapidly fail to self-renew, whereas lethal giant larvae (lgl) mutant neuroblasts generate multiple neuroblasts. Notably, lgl pins double mutant neuroblasts all divide symmetrically to self-renew, filling the brain with neuroblasts at the expense of neurons. The lgl pins neuroblasts show ectopic cortical localization of atypical protein kinase C (aPKC), and a decrease in aPKC expression reduces neuroblast numbers, suggesting that aPKC promotes neuroblast self-renewal. In support of this hypothesis, neuroblast-specific overexpression of membrane-targeted aPKC, but not a kinase-dead version, induces ectopic neuroblast self-renewal. We conclude that cortical aPKC kinase activity is a potent inducer of neuroblast self-renewal.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk