Send to:

Choose Destination
See comment in PubMed Commons below
Science. 2006 Jan 13;311(5758):208-12. Epub 2005 Dec 15.

A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates.

Author information

  • 1Department of Materials Science and Engineering.


We have produced a stretchable form of silicon that consists of submicrometer single-crystal elements structured into shapes with microscale, periodic, wavelike geometries. When supported by an elastomeric substrate, this "wavy" silicon can be reversibly stretched and compressed to large levels of strain without damaging the silicon. The amplitudes and periods of the waves change to accommodate these deformations, thereby avoiding substantial strains in the silicon itself. Dielectrics, patterns of dopants, electrodes, and other elements directly integrated with the silicon yield fully formed, high-performance "wavy" metal oxide semiconductor field-effect transistors, p-n diodes, and other devices for electronic circuits that can be stretched or compressed to similarly large levels of strain.

Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk