Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2005 Dec 15;65(24):11649-57.

Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells.

Author information

  • 1Laboratory of Molecular Pathology and Ultrastructure, Regina Elena Cancer Institute, Rome, Italy.

Abstract

Despite considerable efforts to improve early detection and advances in chemotherapy, metastatic relapses remain a major challenge in the management of ovarian cancer. The endothelin A receptor (ET(A)R)/endothelin-1 (ET-1) axis has been shown to have a significant role in ovarian carcinoma by promoting tumorigenesis. Here we show that the ET-1/ET(A)R autocrine pathway drives epithelial-to-mesenchymal transition (EMT) in ovarian tumor cells by inducing a fibroblastoid and invasive phenotype, down-regulation of E-cadherin, increased levels of beta-catenin, Snail, and other mesenchymal markers, and suppression of E-cadherin promoter activity. Activation of ET(A)R by ET-1 triggers an integrin-linked kinase (ILK)-mediated signaling pathway leading to glycogen synthase kinase-3beta (GSK-3beta) inhibition, Snail and beta-catenin stabilization, and regulation of transcriptional programs that control EMT. Transfection of dominant negative ILK or exposure to an ILK inhibitor suppresses the ET-1-induced phosphorylation of GSK-3beta as well as Snail and beta-catenin protein stability, activity, and invasiveness, indicating that ET-1/ET(A)R-induced EMT-promoting effects depend on ILK. ET(A)R blockade by specific antagonists or reduction by ET(A)R RNA interference reverses EMT and cell invasion by inhibiting autocrine signaling pathways. In ovarian carcinoma xenografts, ABT-627, a specific ET(A)R antagonist, suppresses EMT determinants and tumor growth. In human ovarian cancers, ET(A)R expression is associated with E-cadherin down-regulation, N-cadherin expression, and tumor grade. Collectively, these findings provide evidence of a critical role for the ET-1/ET(A)R axis during distinct steps of ovarian carcinoma progression and identify novel targets of therapeutic intervention.

PMID:
16357176
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances

Publication Types

MeSH Terms

Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk