Ab initio potential-energy surfaces of O2(X3Sigmag -, a1Deltag, b1Sigmag +) +O2 (X3Sigmag -, a1Deltag, b1Sigmag +): mechanism of quenching of O2 (a 1Deltag)

J Chem Phys. 2005 Nov 22;123(20):204319. doi: 10.1063/1.2126978.

Abstract

Ab initio computational studies were carried out in order to explore the possible mechanisms of quenching of O(2)(a (1)Delta(g)) by O(2)(X (3)Sigma(g) (-)): the self-quenching of O(2)(a (1)Delta(g)) and other energy-transfer processes involving two O(2) molecules. All eighteen states arising from two O(2) molecules in the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) states are considered. After scans at the state-averaged complete active space self-consistent field method to identify possible regions of crossing between states belonging to different asymptotes, complete active state second-order perturbation theory high-symmetry optimization and low-symmetry scans established that four different minima on the seams of crossing (MSXs), arising between the a+a manifold and the X+b manifold and responsible for self-quenching: O(2)(a (1)Delta(g))+O(2)(a (1)Delta(g))-->O(2)(X (3)Sigma(g) (-))+O(2)(b (1)Sigma(g) (+)), have coplanar C(2h) or C(2v) symmetries and are only 0.45 eV barrier relative to the a+a asymptote and energetically easily accessible. The rate constant for this process was estimated based on the Landau-Zener formalism. The MSXs for quenching of O(2)(a (1)Delta(g)) by the ground state O(2)(X (3)Sigma(g) (-)):O(2)(a (1)Delta(g))+O(2)(X (3)Sigma(g) (-))-->O(2)(X (3)Sigma(g) (-))+O(2)(X (3)Sigma(g) (-)) require higher energies and the process is not likely to be important.